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Abstract. Visual object tracking is an important prerequisite in many
applications. However, the performance of the tracking system is often
affected by the quality of the visual object’s feature representation and
whether it can identify the best match of the target template in the search
area. To alleviate these challenges, we propose a new method based on
Multi-Layer Perceptron (MLP) and multi-head cross attention. First, a
new MLP-based module is designed to enhance the input features, by
refining the internal association between the spatial and channel dimen-
sions of these features. Second, an improved head network is constructed
for predicting the location of the target, in which the multi-head cross
attention mechanism is used to find the optimal matching between the
template and the search area. Experiments on four datasets show that
the proposed method offers competitive tracking performance as com-
pared with several recent baseline methods. The codes will be available
at https://github.com/SYLan2019/MLP-MHCA.
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1 Introduction

Visual object tracking is an active field of research in computer vision. Tra-
ditional tracking algorithms are based on either generative or discriminative
models. In generative algorithms [1], the target features are extracted for con-
structing an appearance model and then matched with those from the searching
area. However, the performance of the generative models degrades in a com-
plex environment, in the presence of illumination changes and occlusions. The
discriminative models [9,17,5,31,30,4] convert the tracking problem into a classi-
fication and localization problem. To effectively identify the target in the search
area, it is crucial to obtain robust and accurate feature representations for the
targets.

One of the most classic discriminative models is the Siam network [2], which
simply translates the tracking problem into a problem of learning the matching
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between the target template and the search area. Siamese-based trackers usu-
ally consist of a backbone network and a head network, in which the backbone
network is used to extract features, and the head network is used for target
classification and localization. Existing Siamese-based trackers can be divided
into convolutional neural networks (CNN)-based Siamese trackers [2,18] and
Transformer-based Siamese trackers [6,5,7]. In CNN-based Siamese trackers [2],
the target template is used to match with the search area through sliding con-
volution, and the area with the maximum response value is then obtained as the
target position. However, during the correlation operation, CNN-based Siamese
trackers tend to give locally optimal solutions, as the correlation operation it-
self is a local linear matching process[5]. In Transformer-based Siamese trackers
[5,7], the correlation operation is replaced with Transformer, which can prevent
the algorithm from converging to local minimum with the global information ex-
tracted from the image, but the entire transformer architecture leads to a high
computational load.

Recently, several studies have been performed on replacing transformers with
more efficient methods. For example, Tolstikhi et al [27] advocated that using
only MLP can achieve the same performance as using transformers in visual clas-
sification tasks, but with significantly improved computational efficiency. Moti-
vated by this work, we introduce MLPs in our tracking task to enhance feature
representations, in order to improve the discrimination of the target in the search
area for target localization. In addition, we design a simple cross attention mod-
ule followed by another MLP for predicting the location of the target, rather
than using a correlation operation between the template and the search area as
used in previous work [2].

Our main contributions can be summarized as follows:

– We propose a new tracking framework based on MLPs and multi-head cross
attention. In our proposed framework, a new MLP-based module is designed
to enhance the feature representation by associating the channel and the
spatial information within the input features. Our ablation experiments show
the effectiveness of our modification.

– An improved head network is constructed with simple multi-head cross at-
tention instead of using a conventional correlation filter for predicting the
position of the target in a local search area.

– Extensive experiments on the OTB2015, UAV123, NFS, and VOT2020 datasets
show that the proposed method outperforms the compared baselines.

2 Proposed Approach

2.1 Architecture

The architecture of the Siamese network that we propose for object tracking
can be divided into three parts: backbone for feature extraction, neck network
for feature enhancement, and head network for classification and regression, as
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Fig. 1. The framework of the proposed Siamese network based on MLPs and multi
head cross attention.

shown in Fig. 1. Unlike TransT [5], our backbone Resnet50 extracts the features
of different layers, including semantic information from deep layers and textural
information from shallow layers, that are helpful for improving the performance
of classification and regression [6]. In addition, we utilize a feature enhancement
module based on MLPs to extract features at different scales and improve the
ability of the network in feature representation. In the head network, we design
an efficient multi-head cross attention to overcome local optimization problems
of target localization in the search area.

2.2 Feature Enhancement Module Based on MLP

Convolution pays more attention to the spatial information on the feature map
and ignores the information on the channel dimension. Here, we propose a fea-
ture enhancement network based on multi-layer perceptron to enhance the fea-
tures. As shown in Fig. 2, the features extracted by the backbone are first passed
through layer normalization, then they are reshaped and input into a multi-layer
perception composed of two fully-connected layers and a GeLU [14] activation
layer. Then, we reshape them and feed them into the next multilayer percep-
tron. That is, the spatial feature is extracted first, followed by the channel-wise
feature. As shown in Fig. 1, we extract the features of the second and third
layers in Resnet50, whose channel dimensions are 512 and 1024, respectively. To
ensure that the feature dimensions from different layers are consistent to enable
feature fusion, we chose to employ two fully-connected layers to lower the chan-
nel dimension. In this way, we can aggregate spatial features to achieve feature
enhancement, in addition, we can reduce the computational cost to some extent.

2.3 Head Network Based on Multi-head Cross Attention (MHCA)

Existing Siamese network trackers use correlation operations [31] to find simi-
larity between the template and the search area. However, the usual correlation
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Fig. 2. Feature enhancement network based on MLP. The left figure shows the core
idea, while the right shows the general process. The linear operation in the right fig-
ure corresponds to a full-connected layer in MLP. In addition, channel interaction is
achieved in each Mixer operation by applying one-dimensional global average pool-
ing and one-dimensional fully connected layers. The global average pooling captures
global statistical information for each channel, while the fully connected layers in Mixer
operation learn weights to model the relationships between channels.

operation itself is a local linear matching process[5], which is prone to taking the
local optimal matching as the final result. To solve this problem, we introduce a
multi-head cross attention module to identify the similarity between them and
retains semantic features, as shown in Fig. 3. To determine the relationship be-
tween the features from the template and the features from the search region,
we use the search region feature of dimension 1024 × 256 as K and V , and the
template feature of dimension 256×256 as Q. Then, Q and K are passed through
two different fully-connected layers, and then multiplied with each other. After
that, the shape becomes 1024 × 256, then this result is mapped to the V vec-
tor (i.e., by multiplying the matrix with V ). Finally, it is passed through the
fully-connected layer to adjust the number of channels. In this way, we replace
the correlation operations with the multi-head cross attention mechanism. The
following is the initial cross-attention formula:

SelfAttention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Fig. 3. The cross attention module.
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To construct the head networks, we use two cross-attention structures in our
approach. The results are spliced through the channels to decrease the number
of parameters. The formula is given as:

MultiHead(Q,K, V ) = Linear(Concat(H1, H2)) (2)

where Concat(·) means concatenate operation, H1 and H2 are the output of the
MHCA module. The Linear(·) operation is achieved with a fully-connected layer
that controls the number of channels.

2.4 Adaptive Multi-Layer Feature Fusion

We extracted both shallow location information and deep semantic information
for the tracking task in order to improve the performance of the model. The fea-
tures from shallow layers contain detailed textural information which are suitable
for localization, while the features from deep layers contain semantic informa-
tion which are useful for classification [6,18]. As shown in Fig. 1, we extracted
the layer2 and layer3 features from Resnet50. As a result, the features of the
target template have a shape 512 × 16 × 16 and 1024 × 16 × 16. Both become
256× 16× 16 after they are passed through the feature enhancing network. For
the feature from the search region, its shape will eventually become 256×32×32.
In a typical feature fusion method, the shallow and deep features are concate-
nated before applying dimension reduction with convolution layers. Unlike this
method, we treat them independently first, then splice them, as indicated in the
formula:

P cls
w×h×2 , P reg

w×h×4

= MLP ([mHead1(ft1, fs1),mHead2(ft2, fs2)])
(3)

The shallow and deep features of the target template are denoted by ft1 and
ft2, while the shallow and deep features of the search area are denoted by fs1
and fs2, respectively. mHead is a multi-head cross attention based head network
proposed in this paper, and the symbol [·] denotes the channel splicing operation.
P cls and P reg represent the prediction results of classification and regression,
respectively.

3 Experiments

3.1 Experimental Setup

We train our model on four typical datasets including COCO [19], LaSOT [10],
GOT-10K [15], and VOT2020 [16]. ImageNet [25] pretrained Resnet-50 [13] is
used to initialize the parameters of the backbone, whereas Xavier init [12] is used
to initialize the remaining parameters in our model. We employed two RTX3090
GPUs to train our model, with 10−5 as the learning rate for the backbone, and
10−4 for the others. The default batch size is 36, with each epoch having 1000
iterations and a total of 500 epochs. We use AdamW [20] as the optimizer. The
number of heads in multi-head cross attention is 8. The number of channels in
the hidden layer was set to 2048.
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Table 1. Evaluation results on OTB2015, NFS and UAV123. Red and blue repre-
sent the top two track results, respectively. The symbol - is used to denote that the
corresponding test results are not included in the official model.

Trackers Years OTB2015 UAV123 NFS
AUC Prec. AUC P NP AUC

DaSiamRPN [31] 2018 0.650 0.880 0.568 0.796 - -
SiamRPN++ [18] 2019 0.696 0.914 0.613 0.807 - -

DiMP [3] 2019 0.688 0.900 0.597 0.152 0.441 0.620
SiamBAN [6] 2020 0.696 0.910 0.597 0.178 0.452 0.594
STARK [29] 2021 0.696 - 0.692 0.882 0.660 0.652

KeepKtack [22] 2021 0.709 - 0.697 - - 0.664
TransT [5] 2021 0.696 - 0.691 0.876 0.694 0.657
RTS[24] 2022 - - 0.676 0.894 0.816 0.654

ToMP [21] 2022 0.701 - 0.690 - - 0.669
Mixformer [7] 2022 0.700 0.929 0.687 0.895 - -

Ours - 0.701 0.909 0.701 0.898 0.703 0.671

Table 2. Evaluation results on VOT2020. Red and blue represent the best two results
respectively. The symbol - is used to denote that the corresponding test results are not
included in the official model.

Ours Mixformer
[7]

ToMP
[21]

RTS
[24]

CSWinTT
[26]

TransT
[5]

STARK50
[29]

D3S
[16]

ATOM
[8]

DiMP
[3]

2022 2022 2022 2022 2021 2021 2020 2019 2019

EAO 0.509 0.527 0.297 0.506 0.304 0.293 0.308 0.439 0.271 0.274
Accuracy 0.723 0.746 0.453 0.710 0.480 0.477 0.478 0.699 0.462 0.457
Robustness 0.828 0.833 0.789 0.845 0.787 0.754 0.799 0.769 0.734 0.734
∆ EAO to ours - ↓0.018 ↑0.212 ↑0.003 ↑0.205 ↑0.216 ↑0.201 ↑0.07 ↑0.238 ↑0.235

3.2 Results and Analysis

We perform test of the model on several datasets, including OTB2015 [28], NFS
[11], UAV123 [23] and VOT2020 [16]. Our model was trained on the LaSOT
[10], GOT-10K [15] and COCO [19] datasets before the testing. We compare
our method with state-of-the-art (SOTA) tracking algorithms qualitatively and
quantitatively on OTB2015, NFS and UAV123 datasets. Table 1 shows AUC,
Precision, Norm Precision results. It can be observed that our model outper-
forms all other methods on the UAV123 and NFS datasets while achieving
competitive results on the OTB2015 dataset. Compared with TransT [5] and
other SOTA methods, the AUC and precision scores in OTB2015 are both in-
creased by 1.3% and 1.7%, respectively. On the NFS dataset, the AUC score
is increased by 2.1%. On the UAV123 dataset, the precision score is increased
by 2.5%. Furthermore, the NFS and UAV123 datasets involve more background
clutter and camera viewpoint change. Our method achieves better performance
on these two datasets than SOTA baselines. This demonstrates that the feature
enhance module in our model can effectively improve the tracking robustness
against the changes in visual attributes. In addition, the tracking speed of our
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model is about 40 FPS, which can meet the requirement of real-time tracking.
These results show that the proposed method achieves competitive performance
as compared with the SOTA baselines.

Fig. 4 shows a comparison between our algorithm, SiamBan [6] and TransT [5]
for helicopter tracking. The red, green, blue and cyan boxes represent the ground-
truth position, and the position estimated by the proposed method, SiamBan
and TransT, respectively. In total, eight frames are selected. The helicopter video
sequence represents a challenging case with scale change of the target. It can be
found that our algorithm can still accurately predict the location and size of the
target when the target scale has changed.

Fig. 4. The results of the methods in tracking the helicopter. The number in the upper
left corner of each picture is the frame number in the helicopter video sequence.

We also evaluated our model on the VOT2020 [16] short-term tracking chal-
lenge, and compared it with recent trackers. The results are shown in Table
2, where EAO, A, R are classic tracking performance indicators used on this
dataset, representing Expected Average Overlap, Accuracy and Robustness re-
spectively. The proposed method offers a higher EAO score, as compared with
RTS [24], CSwinTT [26] and ToMP [21], just a little less than Mixformer [7].
In addition, our method ranks second and third in terms of Accuracy and Ro-
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bustness indicators, respectively. However, the proposed method gives a much
higher EAO score than TransT [5], reaching 50.9%. All these experimental results
demonstrate that our method can achieve competitive performance in short-term
tracking challenge.

In addition, our proposed method can alleviate the computational limitations
of the transformer module in object tracking to a certain extent. Table 3 shows
that our method is more effective than TransT [5] and Mixformer [7]. Although
MLP operations can also be computationally intensive, our approach employs
a dimensionality reduction process in the MLP module, which enhances feature
representation and reduces computation (as shown in Figure 5, the computa-
tional cost is adjusted by controlling the scaling ratio of the output to the input
in the FC layer). Therefore, our approach presents a promising alternative to the
transformer module in terms of efficiency and effectiveness for object tracking.

Table 3. The comparison of the size of the three methods. "Linear" refers to the fully
connected layer

method TrasnT Mixformer MLP-MHCA
Number of parameters(MB) 23.0 35.1 20.0

Fig. 5. The internal structure of an MLP.

3.3 Ablation Study

We carried out ablation experiments on the VOT2020 [16] dataset to demon-
strate the effectiveness of various modules in the proposed model, including
multi-head cross-attention, feature enhancement network based on multi-layer
perceptron and multi-layer feature adaptive fusion. The ablation experiment
results are shown in Table 4. Among them, mHead represents multi-head cross-
attention, the correlation operation in Siamese network trackers is represented
by Cor, layer2 represents the second layer feature of Resnet50, layer3 represents
the third layer feature of Resnet50, and EN-MLP is the feature enhancement
module based on multi-layer perceptron.

Experiment 1 represents our proposed method where the correlation opera-
tion is replaced with attention. Experiment 2 shows the outcomes of an experi-
ment employing only the second layer of the Resnet50. The result of using only
the third layer of Resnet50 is shown in experiment 3. Through the comparison
of experiments 1, 2 and 3, it can be seen that the simultaneous selection of
the second and third layers improves tracking performance. Experiment 4 shows
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Table 4. Ablation studies on the VOT2020 dataset. ✓ means the component is used,
while × means that it is not used in the model.

number Whether to use VOT2020
mHead Cor Layer2 EN-MLP Layer3 EN-MLP A R EAO

1 ✓ × ✓ ✓ ✓ ✓ 0.723 0.828 0.509
2 ✓ × ✓ ✓ × ✓ 0.652 0.787 0.466
3 ✓ × × ✓ ✓ ✓ 0.676 0.809 0.483
4 × ✓ ✓ ✓ ✓ ✓ 0.563 0.749 0.448
5 ✓ × ✓ × ✓ × 0.573 0.722 0.446
6 ✓ × × × ✓ × 0.545 0.730 0.421

Fig. 6. Visualization results of feature map and response map. The two pictures in
the first column show the features of Resnet Layer 2 that are not enhanced by MLP
and the features of Resnet Layer 2 that are enhanced by MLP. The second column
represents the performance results of Resnet Layer 3 features and MLP. The top of
the third column represents the response map fused with the MHCA. The figure below
represents feature map obtained by related operations.

the results of utilizing the traditional convolution operation rather than the at-
tention mechanism. We can see that all the performance indexes decreased as
compared with those in experiment 1, especially the Robustness and EAO, which
showed that the multi-head cross-attention was helpful to improve the accuracy
and robustness of the tracker. Experiment 5 did not use the MLP based feature
enhancement module as in experiment 1, thus the performance scores obtained
are also lower than those in experiment 1. In experiment 6, only the feature of
the third layer of Resnet50 is used, and as a result, the accuracy and robustness
scores are greatly reduced. This shows that the use of multi-layer features can
improve the performance of the tracker.

Fig. 6 visualises the feature map and response map in the ablation exper-
iment. The red box in the search area surrounds the object ant. The features
from both layer 2 and layer 3 show the contour of the object ant and the nearby
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ant. With the help of the MLP based feature enhancement module, the con-
tour of the object becomes clearer with less clutter in surrounding area, which
helps mitigate the impact of interference on the tracker. The response map of
multi-head cross-attention has a dimension of 32×32. The region with a high
response value still lies around the object in the response map of multi-head
cross-attention (see Fig. 6 (e)). However, as shown in Fig. 6 (f), the high response
value of correlation operation has deviated from the target location. Therefore,
the experimental results demonstrate that the multi-head cross attention is more
beneficial to improve the tracking accuracy and robustness over the correlation
operation.

To sum up, the proposed multi-head cross-attention, feature enhancement
module and multi-layer feature adaptive fusion indeed improve the performance
of the tracker.

4 Conclusions

We have presented a Siamese network based on multi-layer perceptron and multi-
head cross attention for visual tracking. We studied a new paradigm of MLP
as feature enhancement, and the use of multi-head cross attention to replace
the correlation operation in the Siamese network. This enables the extraction
of shallow location information and deep semantic information simultaneously
while utilizing multi-layer perceptron to enhance the features. The experiments
on the OTB2015, VOT2020, NFS and UAV123 datasets show the effectiveness
of our proposed method, as compared with several SOTA baseline methods. In
the future, we will further study visual object tracking by taking the temporal
information into account.
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